Strong convergence theorems of k-strict pseudo-contractions in Hilbert spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An intermixed algorithm for strict pseudo-contractions in Hilbert spaces

*Correspondence: [email protected] 2Department of Mathematics and the RINS, Gyeongsang National University, Jinju, 660-701, Korea Full list of author information is available at the end of the article Abstract An intermixed algorithm for two strict pseudo-contractions in Hilbert spaces have been presented. It is shown that the suggested algorithms converge strongly to the fixed points of two str...

متن کامل

Strong Convergence Theorems of Viscosity Iterative Methods for a Countable Family of Strict Pseudo-contractions in Banach Spaces

For a countable family {Tn}n 1 of strictly pseudo-contractions, a strong convergence of viscosity iteration is shown in order to find a common fixed point of {Tn}n 1 in either a p-uniformly convex Banach space which admits a weakly continuous duality mapping or a p-uniformly convex Banach space with uniformly Gâteaux differentiable norm. As applications, at the end of the paper we apply our res...

متن کامل

Strong Convergence Theorems by Generalized Cq Method in Hilbert Spaces

Recently, CQ method has been investigated extensively. However, it is mainly applied to modify Mann, Ishikawa and Halpern iterations to get strong convergence. In this paper, we study the properties of CQ method and proposed a framework. Based on that, we obtain a series of strong convergence theorems. Some of them are the extensions of previous results. On the other hand, CQ method, monotone Q...

متن کامل

Weak and Strong Convergence Theorems for k-Strictly Pseudo-Contractive in Hilbert Space

LetK be a nonempty closed convex subset of a real Hilbert space H , and assume that Ti : K → H, i = 1, 2...N be a finite family of ki-strictly pseudo-contractive mappings for some 0 ≤ ki ≤ 1 such that ⋂N i=1 F (Ti) = {x ∈ K : x = Tix, i = 1, 2...N} = ∅. For the following iterative algorithm in K, for x1, x ′ 1 ∈ K and u ∈ K, { yn = PK [kxn + (1− k)Σi=1λiTixn] xn+1 = βnxn + (1− βn)yn and { y′ n ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Mathematical Journal

سال: 2009

ISSN: 0011-4642,1572-9141

DOI: 10.1007/s10587-009-0041-3